如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,直线OB交⊙O于点E,D,连接EC,CD.(1)试判断直线AB与

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,直线OB交⊙O于点E,D,连接EC,CD.(1)试判断直线AB与⊙O的位置关系,并加以证明;(2)求证:BC2... 如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,直线OB交⊙O于点E,D,连接EC,CD.(1)试判断直线AB与⊙O的位置关系,并加以证明;(2)求证:BC2=BD?BE;(3)若tanE=12,⊙O的半径为3,求OA的长. 展开
 我来答
陡变吧ZQM
推荐于2016-03-07 · TA获得超过112个赞
知道答主
回答量:113
采纳率:0%
帮助的人:132万
展开全部
解:(1)AB与⊙O相切,连接OC,
∵OA=OB,CA=CB,
∴OC⊥AB,
∵点C在⊙O上,
∴AB与⊙O相切

(2)连接OC,∵OC⊥AB,
∴∠OCB=90°即∠1+∠3=90°,
又∵DE为⊙O的直径,
∴∠ECD=90°即∠2+∠3=90°,
∴∠1=∠2,
∵OE=OC,
∴∠E=∠2,
∴∠1=∠E,
∵∠B=∠B,
∴△BCD∽△BEC,
BC
BE
=
BD
BC

∴BC2=BD?BE;

(3)∵tanE=
1
2
,∠ECD=90°,
CD
EC
=
1
2

∵⊙O的半径为3,
∴OC=OE=3,
∵△BCD∽△BEC,
BC
BE
=
CD
EC
,设BC=x,
x
OB+3
=
1
2

∴OB=2x-3,
∵∠OCB=90°,
∴OC2+BC2=OB2
∴9+x2=(2x-3)2
∴x1=0(舍去),x2=4,
∴OA=OB=5.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式