若函数f(x)=x3-x2+mx在区间[0,2]上单调递增,可得实数m的取值范围是[a,+∞),则实数a=______

若函数f(x)=x3-x2+mx在区间[0,2]上单调递增,可得实数m的取值范围是[a,+∞),则实数a=______.... 若函数f(x)=x3-x2+mx在区间[0,2]上单调递增,可得实数m的取值范围是[a,+∞),则实数a=______. 展开
 我来答
dcVL249
推荐于2016-09-07 · 超过46用户采纳过TA的回答
知道答主
回答量:96
采纳率:0%
帮助的人:125万
展开全部
解析:∵f(x)=x3-x2+mx,
∴f′(x)=3x2-2x+m.
又∵f(x)在[0,2]上单调递增,
∴3x2-2x+m≥0在x∈[0,2]上恒成立,
∴m≥(-3x2+2x)max=
1
3

∴m∈[
1
3
,+∞).
故答案为:
1
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式