设F1,F2是双曲线C:x2a2?y2b2=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最

设F1,F2是双曲线C:x2a2?y2b2=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的渐近线方... 设F1,F2是双曲线C:x2a2?y2b2=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的渐近线方程为y=±2xy=±2x. 展开
 我来答
HB71X
推荐于2016-10-10 · TA获得超过102个赞
知道答主
回答量:107
采纳率:0%
帮助的人:97.9万
展开全部
如图所示,
不妨设点P在双曲线的右支上.
则|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,
联立解得
|PF1|=4a
|PF2|=2a

∵4a>2a,|F1F2|=2c>2a.
∴∠PF1F2是最小角,因此∠PF1F2=30°
由余弦定理可得:|PF2|2=|PF1|2+|F1F2|2-2|PF1||F1F2|cos30°
∴(2a)2=(4a)2+(2c)2-2×4a×2c?cos30°,
化为c2?2
3
ac+3a2
=0,
e2?2
3
e+3=0

解得e=
3

3
c
a
1+
b2
a2

解得
b
a
2

∴渐近线方程为y=±
2
x

故答案为:y=±
2
x
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式