一只口袋内装有大小质量完全相同的5只球,其中2只白球,3只黑球,从中一次摸出一个球,则摸得黑球的概率
一只口袋内装有大小质量完全相同的5只球,其中2只白球,3只黑球,从中一次摸出一个球,则摸得黑球的概率是______....
一只口袋内装有大小质量完全相同的5只球,其中2只白球,3只黑球,从中一次摸出一个球,则摸得黑球的概率是______.
展开
1个回答
展开全部
(1)解:n=1时,2a1=a1a2+r,
∵a1=c≠0,
∴2c=ca2+r,a2=2?
. (1分)
n≥2时,2Sn=anan+1+r,①
2Sn-1=an-1an+r,②
①-②,得2an=an(an+1-an-1).
∵an≠0,∴an+1-an-1=2. ( 3分)
则a1,a3,a5,…,a2n-1,…成公差为2的等差数列,
a2n-1=a1+2(n-1).
a2,a4,a6,…,a2n,…成公差为2的等差数列,
a2n=a2+2(n-1).
要使{an}为等差数列,当且仅当a2-a1=1.
即2?
?c=1.r=c-c2. ( 4分)
∵r=-6,∴c2-c-6=0,c=-2或3.
∵当c=-2,a3=0,不合题意,舍去.
∴当且仅当c=3时,数列{an}为等差数列. (5分)
(2)证明:a2n-1-a2n=[a1+2(n-1)]-[a2+2(n-1)]=a1-a2=c+
-2.
a2n-a2n+1=[a2+2(n-1)]-(a1+2n)=a2-a1-2=-(c+
). (8分)
∴Pn=
[na1+
×2]
=
?n?(n+c?1).(9分)
Qn=?
[na2+
×2]
=-
?n?(n+1?
).(10分)
∴Pn?Qn=
?n?(n+c-1)+
?n?(n+1?
)
=(
+
)n2+(
∵a1=c≠0,
∴2c=ca2+r,a2=2?
r |
c |
n≥2时,2Sn=anan+1+r,①
2Sn-1=an-1an+r,②
①-②,得2an=an(an+1-an-1).
∵an≠0,∴an+1-an-1=2. ( 3分)
则a1,a3,a5,…,a2n-1,…成公差为2的等差数列,
a2n-1=a1+2(n-1).
a2,a4,a6,…,a2n,…成公差为2的等差数列,
a2n=a2+2(n-1).
要使{an}为等差数列,当且仅当a2-a1=1.
即2?
r |
c |
∵r=-6,∴c2-c-6=0,c=-2或3.
∵当c=-2,a3=0,不合题意,舍去.
∴当且仅当c=3时,数列{an}为等差数列. (5分)
(2)证明:a2n-1-a2n=[a1+2(n-1)]-[a2+2(n-1)]=a1-a2=c+
r |
c |
a2n-a2n+1=[a2+2(n-1)]-(a1+2n)=a2-a1-2=-(c+
r |
c |
∴Pn=
1 | ||
c+
|
n(n?1) |
2 |
=
1 | ||
c+
|
Qn=?
1 | ||
c+
|
n(n?1) |
2 |
=-
1 | ||
c+
|
r |
c |
∴Pn?Qn=
1 | ||
c+
|
1 | ||
c+
|
r |
c |
=(
1 | ||
c+
|
1 | ||
c+
|
c?1 | |
c+
|