如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.(1)求证:∠1+∠2=90°;(2)若∠ABD的平分

如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.(1)求证:∠1+∠2=90°;(2)若∠ABD的平分线与CD的延长线交于F,且∠F=55°,求... 如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.(1)求证:∠1+∠2=90°;(2)若∠ABD的平分线与CD的延长线交于F,且∠F=55°,求∠ABC;(3)若H是BC上一动点,F是BA延长线上一点,FH交BD于M,FG平分∠BFH,交DE于N,交BC于G.当H在BC上运动时(不与B点重合),∠BAD+∠DMH∠DNG的值是否变化?如果变化,说明理由;如果不变,试求出其值. 展开
 我来答
俭勤饱读春秋8510
2014-12-12 · 超过50用户采纳过TA的回答
知道答主
回答量:113
采纳率:50%
帮助的人:106万
展开全部
(1)证明:AD∥BC,
∠ADC+∠BCD=180,
∵DE平分∠ADB,
∠BDC=∠BCD,
∴∠ADE=∠EDB,
∠BDC=∠BCD,
∵∠ADC+∠BCD=180°,
∴∠EDB+∠BDC=90°,
∠1+∠2=90°.

解:(2)∠FBD+∠BDE=90°-∠F=35°,
∵DE平分∠ADB,BF平分∠ABD,
∴∠ADB+∠ABD=2(∠FBD+∠BDE)=70°,
又∵四边形ABCD中,AD∥BC,
∴∠DBC=∠ADB,
∴∠ABC=∠ABD+∠DBC=∠ABD+∠ADB,
即∠ABC=70°;

(3)
∠BAD+∠DMH
∠DNG
的值不变.
证明:在△BMF中,
∠BMF=∠DMH=180°-∠ABD-∠BFH,
又∵∠BAD=180°-(∠ABD+∠ADB),
∠DMH+∠BAD=(180°-∠ABD-∠BFH)+(180°-∠ABD-∠ADB),
=360-∠BFH-2∠ABD-∠ADB,
∠DNG=∠FNE=180°-
1
2
∠BFH-∠AED,
=180°-
1
2
∠BFH-∠ABD-
1
2
∠ADB,
=
1
2
(∠DMH+∠BAD),
∠BAD+∠DMH
∠DNG
=2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式