平行四边形ABCD中,M、N分别是AB、CD的中点,AN与DM相交于点P,BN与CM相交于点Q.试说明PQ与MN互相平分

平行四边形ABCD中,M、N分别是AB、CD的中点,AN与DM相交于点P,BN与CM相交于点Q.试说明PQ与MN互相平分.... 平行四边形ABCD中,M、N分别是AB、CD的中点,AN与DM相交于点P,BN与CM相交于点Q.试说明PQ与MN互相平分. 展开
 我来答
手机用户11453
2014-12-20 · 超过63用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:117万
展开全部
证明:
∵四边形ABCD是平行四边形,
∴AB=DC,AB∥CD,
∵M、N分别是AB、CD的中点,
∴DN=CN=
1
2
DC,AM=BM=
1
2
AB,
∴DN∥BM,DN=BM,
∴四边形DMBN是平行四边形,
∴PM∥NQ,
同理:PN∥MQ,
∴四边形PNQM为平行四边形,
∴PQ与MN互相平分.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式