已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点M是BE的中点,连接CM.当点D在AB上,点E在A

已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点M是BE的中点,连接CM.当点D在AB上,点E在AC上时(如图一),连接DM,可得结论:DC=2... 已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点M是BE的中点,连接CM.当点D在AB上,点E在AC上时(如图一),连接DM,可得结论:DC=2CM.将△ADE绕点A逆时针旋转,当点D在AC上(如图二)或当点E在BA的延长线上(如图三)时,请你猜想DC与CM有怎样的数量关系,并选择一种情况加以证明. 展开
 我来答
小希gc51
2014-11-12 · TA获得超过264个赞
知道答主
回答量:210
采纳率:71%
帮助的人:67.7万
展开全部
(1)DC=
2
CM
如图二,连接DM并延长DM交BC于N,
∵∠EDA=∠ACB=90°,
∴DE∥BC,
∴∠DEM=∠MBC,
∵在△EMD和△BMN中,
∠DEM=∠NBM
EM=BM
∠EMD=∠NMB

∴△EMD≌△BMN(ASA),
∴BN=DE=DA,MN=MD
∵BA=BC,
∴CD=CN,
∴△DCN是等腰直角三角形,且CM是底边的中线,
∴CM⊥DM,∠DDM=
1
2
∠DCN=45°=∠BCM,
∴△CMD为等腰直角三角形.
∴DC=
2
CM;
(2)DC=
2
CM,
理由:如图三,连接DM,过点B作BN∥DE交DM的延长线于N,连接CN,
∴∠E=∠MBN=45°.
∵点M是BE的中点,
∴EM=BM.
∵在△EMD和△BMN中,
∠E=∠MBN
EM=BM
∠DME=∠NMB

∴△EMD≌△BMN(ASA),
∴BN=DE=DA,MN=MD,
∵∠DAE=∠BAC=∠ABC=45°,
∴∠DAC=∠NBC=90°
∵在△DCA和△NCB中
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消