已知:如下图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中

已知:如下图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G。(1)求证:... 已知:如下图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G。(1)求证:BF=AC;(2)求证:CE= BF;(3)CE与BG的大小关系如何?试证明你的结论。 展开
 我来答
任性的公猫690
推荐于2016-05-29 · 超过73用户采纳过TA的回答
知道答主
回答量:141
采纳率:100%
帮助的人:66.2万
展开全部

解:(1)∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形,
∴BD=CD,
在Rt△DFB和Rt△DAC中,
∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,
且∠BFD=∠EFC,
∴∠DBF=∠DCA,
又∵∠BDF=∠CDA=90°,BD=CD,
∴Rt△DFB≌Rt△DAC,
∴BF=AC;
(2)在Rt△BEA和Rt△BEC中,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
又∵BE=BE,∠BEA=∠BEC=90°,
∴Rt△BEA≌Rt△BEC,
∴CE=AE= AC,
又由(1),知BF=AC,
∴CE= AC= BF;
(3)2CE 2 =BG 2
证明:∠ABC=45°,CD垂直AB于D,
则CD=BD,H为BC中点,
则DH⊥BC(等腰三角形“三线合一”)
连接CG,
则BG=CG,∠GCB=∠GBC=22.5°,∠EGC=45°,
又∵BE垂直AC,
故∠EGC=∠ECG=45°,CE=GE,
∴CE 2 +GE 2 =CG 2 =BG 2
即2CE 2 =BG 2 ,BG= CE。


推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式