已知,△ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点.G为EF

已知,△ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点.G为EF的中点,延长CG交AB于点H.(1)若E在... 已知,△ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点.G为EF的中点,延长CG交AB于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=3,CH=5.求边AC的长. 展开
 我来答
七落TA0197
推荐于2017-09-14 · 超过59用户采纳过TA的回答
知道答主
回答量:106
采纳率:100%
帮助的人:54.3万
展开全部
(1)①连接CD,
∵∠ACB=90°,D为AB的中点,AC=BC,
∴CD=AD=BD,
又∵AC=BC,
∴CD⊥AB,
∴∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,
∵DF⊥DE,
∴∠EDF=∠EDC+∠CDF=90°,
∴∠ADE=∠CDF,
在△ADE和△CDF中
∠A=∠DCF
AD=CD
∠ADE=∠CDF

∴△ADE≌△CDF,
∴DE=DF.

②连接DG,
∵∠ACB=90°,G为EF的中点,
∴CG=EG=FG,
∵∠EDF=90°,G为EF的中点,
∴DG=EG=FG,
∴CG=DG,
∴∠GCD=∠CDG
又∵CD⊥AB,
∴∠CDH=90°,
∴∠GHD+∠GCD=90°,∠HDG+∠GDC=90°,
∴∠GHD=∠HDG,
∴GH=GD,
∴CG=GH.

(2)如图,当E在线段AC上时,
∵CG=GH=EG=GF,
∴CH=EF=5,
∵△ADE≌△CDF,
∴AE=CF=3,
∴在Rt△ECF中,由勾股定理得:CE=
EF2?CF2
=4

∴AC=AE+EC=3+4=7;
如图,当E在线段CA延长线时,
AC=EC-AE=4-3=1,
综合上述AC=7或1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式