![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)设M,N分别在线段
如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)设M,N分别在线段AB,EC上,且满足AM=2MB,EN=2...
如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)设M,N分别在线段AB,EC上,且满足AM=2MB,EN=2NC,求证:MN∥平面DAE;(2)求证:AE⊥BE;(3)求二面角E-AC-B的大小.
展开
1个回答
展开全部
∵AM=2MB,EN=2NC,ES=2SB
∴NS∥BC,又BC∥AD,∴NS∥AD,AD?平面ADE,NS?平面ADE,∴NS∥平面ADE.
MS∥AE,AE?平面ADE,MS?平面ADE,∴MS∥平面ADE,又MS∩NS=S,
∴平面MNS∥平面ADE,
∴MN∥平面DAE;
(2)证明:∵AD⊥平面ABE,∴AD⊥AE,又∵AD∥BC,∴BC⊥AE,
由已知BF⊥平面ACE,∴BF⊥AE,而BC∩BE=B,∴AE⊥面BCE.
则AE⊥BE.
∵四边形ABCD为矩形,∴AD⊥AB,
(3)解:取AB中点G,连结EG,在平面ABCD中作GH⊥AC于H,连接EH
∵AE=EB,∴EG⊥AB,由AD⊥平面ABE,知面ABCD⊥面ABE,∴EG⊥面ABCD,
∴EG⊥AC,又GH⊥AC,EG∩GH=G,∴AC⊥EGH,则∠EHG为所求二面角的平面角.
在Rt△AEB中,AE=EB=2,易得到:AB=2
2 |
1 |
2 |
2 |
在Rt△ABC中,AC=2
3 |
GH |
BC |
AG |
AC |
AG?BC |
AC |
| ||
2
|
| ||
3 |
∴在Rt△EGH中,tan∠EHG=
EG |
GH |
|