设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=ex.若对任意的x∈[a,a+1],不等式f(x+a)≥f2(x)
设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=ex.若对任意的x∈[a,a+1],不等式f(x+a)≥f2(x)恒成立,则实数a的最大值是()A.?32B.?2...
设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=ex.若对任意的x∈[a,a+1],不等式f(x+a)≥f2(x)恒成立,则实数a的最大值是( )A.?32B.?23C.?34D.2
展开
1个回答
展开全部
∵f(x)是定义在R上的偶函数,
∴不等式f(x+a)≥f2(x)恒成立等价为f(|x+a|)≥f2(|x|)恒成立,
∵当x≥0时,f(x)=ex.
∴不等式等价为e|x+a|≥(e|x|)2=e2|x|恒成立,
即|x+a|≥2|x|在[a,a+1]上恒成立,
平方得x2+2ax+a2≥4x2,
即3x2-2ax-a2≤0在[a,a+1]上恒成立,
设g(x)=3x2-2ax-a2,
则满足
,
∴
,
即
,
∴a≤?
,
故实数a的最大值是?
.
故选:C.
∴不等式f(x+a)≥f2(x)恒成立等价为f(|x+a|)≥f2(|x|)恒成立,
∵当x≥0时,f(x)=ex.
∴不等式等价为e|x+a|≥(e|x|)2=e2|x|恒成立,
即|x+a|≥2|x|在[a,a+1]上恒成立,
平方得x2+2ax+a2≥4x2,
即3x2-2ax-a2≤0在[a,a+1]上恒成立,
设g(x)=3x2-2ax-a2,
则满足
|
∴
|
即
|
∴a≤?
3 |
4 |
故实数a的最大值是?
3 |
4 |
故选:C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询