已知等差数列{an}公差不为0,其前n项和为Sn,等比数列{bn}前n项和为Bn,公比为q,且|q|>1,则limn→+∞(
已知等差数列{an}公差不为0,其前n项和为Sn,等比数列{bn}前n项和为Bn,公比为q,且|q|>1,则limn→+∞(Snnan+Bnbn)=______....
已知等差数列{an}公差不为0,其前n项和为Sn,等比数列{bn}前n项和为Bn,公比为q,且|q|>1,则limn→+∞(Snnan+Bnbn)=______.
展开
展开全部
等差数列的公差为d,所以前n项和为Sn=na1+
d,an=a1+(n-1)d;
等比数列{bn}前n项和为Bn,公比为q,且|q|>1,Bn=
,bn=b1qn-1;
所以
(
+
)=
(
+
)
=
(
+
)
=
+
故答案为:
+
.
n(n?1) |
2 |
等比数列{bn}前n项和为Bn,公比为q,且|q|>1,Bn=
b1(1?qn) |
1?q |
所以
lim |
n→+∞ |
Sn |
nan |
Bn |
bn |
lim |
n→+∞ |
na1+
| ||
n [a1+(n?1)d] |
| ||
b1qn?1 |
=
lim |
n→+∞ |
| ||||||
|
1?qn |
(1?q)qn?1 |
=
1 |
2 |
q |
q?1 |
故答案为:
1 |
2 |
q |
q?1 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询