已知数列{an}中的相邻两项a2k-1、a2k是关于x的方程x2-(3k+2k)x+3k?2k=0的两个根,且a2k-1≤a2k(k∈N*
已知数列{an}中的相邻两项a2k-1、a2k是关于x的方程x2-(3k+2k)x+3k?2k=0的两个根,且a2k-1≤a2k(k∈N*).(Ⅰ)求a1,a3,a5,a...
已知数列{an}中的相邻两项a2k-1、a2k是关于x的方程x2-(3k+2k)x+3k?2k=0的两个根,且a2k-1≤a2k(k∈N*).(Ⅰ)求a1,a3,a5,a7及写出a2n(n∈N*且n≥4)(不必证明);(Ⅱ)对于任意n∈N*且n≥4,猜想a2n与(2n)2的大小关系.
展开
展开全部
(Ⅰ)方程x2-(3k+2k)x+3k?2k=0的两个根为x1=3k,x2=2k.
当k=1时,x1=3,x2=2,所以a1=2; 当k=2时,x1=6,x2=4,所以a3=4;
当k=3时,x1=9,x2=8,所以a5=8; 当k=4时,x1=12,x2=16,所以a7=12;
因为n≥4时,2n>3n,所以a2n=2n(n≥4)…(6分)
(Ⅱ)当n=4时,a2n=24=16 < 82 =(2n)2;
当n=5时,a2n=25=32 < 102 =(2n)2;
当n=6时,a2n=26=64 < 122 =(2n)2;
当n=7时,a2n=27=128 < 142 =(2n)2;
当n=8时,a2n=28=256 = 162 =(2n)2;
当n=9时,a2n=29=512 < 182 =(2n)2;
所以猜想:当4≤n<7时,a2n<(2n)2;
当n=8时,a2n=(2n)2;
当n≥9时,a2n>(2n)2;…(12分)
当k=1时,x1=3,x2=2,所以a1=2; 当k=2时,x1=6,x2=4,所以a3=4;
当k=3时,x1=9,x2=8,所以a5=8; 当k=4时,x1=12,x2=16,所以a7=12;
因为n≥4时,2n>3n,所以a2n=2n(n≥4)…(6分)
(Ⅱ)当n=4时,a2n=24=16 < 82 =(2n)2;
当n=5时,a2n=25=32 < 102 =(2n)2;
当n=6时,a2n=26=64 < 122 =(2n)2;
当n=7时,a2n=27=128 < 142 =(2n)2;
当n=8时,a2n=28=256 = 162 =(2n)2;
当n=9时,a2n=29=512 < 182 =(2n)2;
所以猜想:当4≤n<7时,a2n<(2n)2;
当n=8时,a2n=(2n)2;
当n≥9时,a2n>(2n)2;…(12分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询