如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:(Ⅰ

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:(Ⅰ)CD⊥AE;(Ⅱ)PD⊥平面ABE... 如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:(Ⅰ)CD⊥AE;(Ⅱ)PD⊥平面ABE. 展开
 我来答
爱刷aWG35FG23
推荐于2016-11-05 · 超过56用户采纳过TA的回答
知道答主
回答量:189
采纳率:100%
帮助的人:114万
展开全部


证明:(Ⅰ)∵PA⊥底面ABCD,∴PA⊥CD,又AC⊥CD,PA∩AC=A,
故CD⊥平面PAC.
又AE?平面PAC,∴CD⊥AE.
(Ⅱ)由题意:AB⊥AD,
∴AB⊥平面PAD,从而AB⊥PD.
又AB=BC,且∠ABC=60°,
∴AC=AB,从而AC=PA.
又E为PC之中点,∴AE⊥PC.
由(Ⅰ)知:AE⊥CD,∴AE⊥平面PCD,从而AE⊥PD.
又AB∩AE=A,
故PD⊥平面ABE.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式