(2013?深圳二模)如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD为边在直角梯形AB
(2013?深圳二模)如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯...
(2013?深圳二模)如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.(1)求证:EB=EF;(2)若EF=6,求梯形ABCD的面积.
展开
展开全部
解:(1)证明:∵△ADF为等边三角形,
∴AF=AD,∠FAD=60°,
∵∠DAB=90°,∠EAD=15°,
∴∠FAE=∠FAD+∠EAD=75°,∠BAE=∠DAB-∠EAD=75°,
∴∠FAE=∠BAE,
又∵AD=AB,
∴AB=AF,
在△FAE和△BAE中,
,
∴△FAE≌△BAE(SAS),
∴EF=EB;
(2)在△FAE和△FDE中,
,
∴△FAE≌△FDE(SSS),
∴∠DFE=∠AFE=
×60°=30°,∠DEF=∠AEF=
×150°=75°,
又∵∠FAE=60°+15°=75°,
∴∠AEF=∠FAE,
又∵EF=6,
∴AF=EF=6,AB=AD=AF=6,
过C作CM⊥AB于M,可得CM=AD=6,
∵tan∠ABC=
,∠ABC=60°,
∴BM=
=
=2
,
∴CD=AM=AB-BM=6-2
∴AF=AD,∠FAD=60°,
∵∠DAB=90°,∠EAD=15°,
∴∠FAE=∠FAD+∠EAD=75°,∠BAE=∠DAB-∠EAD=75°,
∴∠FAE=∠BAE,
又∵AD=AB,
∴AB=AF,
在△FAE和△BAE中,
|
∴△FAE≌△BAE(SAS),
∴EF=EB;
(2)在△FAE和△FDE中,
|
∴△FAE≌△FDE(SSS),
∴∠DFE=∠AFE=
1 |
2 |
1 |
2 |
又∵∠FAE=60°+15°=75°,
∴∠AEF=∠FAE,
又∵EF=6,
∴AF=EF=6,AB=AD=AF=6,
过C作CM⊥AB于M,可得CM=AD=6,
∵tan∠ABC=
CM |
BM |
∴BM=
CM |
tan60° |
6 | ||
|
3 |
∴CD=AM=AB-BM=6-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|