
6个回答
展开全部
结果为:收敛
解题过程如下:
lim(n→∞)1/ln(1+n)/(1/n)
=lim(n→∞) n/ln(1+n)
=lim(n→∞) 1/(1/(n+1))
=lim(n→∞) n+1
=∞
lim(n→∞)1/ln(1+n)=0
且 1/ln(1+n)>1/ln(n+2)
∴交错级数收敛
在交错级数中,常用莱布尼茨判别法来判断级数的收敛性,即若交错级数各项的绝对值单调递减且极限是零,则该级数收敛;此外,由莱布尼茨判别法可得到交错级数的余项估计。最典型的交错级数是交错调和级数。
扩展资料:
莱布尼茨定理仅仅给出了判断交错级数收敛的充分条件,却没有给出判断交错级数发散的条件;同时,如果交错级数满足该定理的条件,也无法判断级数是绝对收敛还是条件收敛。
对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。
若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。
参考资料来源:百度百科--交错级数
参考资料来源:百度百科--收敛

2025-08-13 广告
SCS在敷形涂敷工程和应用领域拥有超过426年的经验,提供业内先进的聚对二甲苯、液体、等离子体、原子层沉积(ALD)和多层敷形涂敷技术。SCS与早期研发聚对二甲苯的公司有着深厚的渊源,我们将专业知识和技术运用于每个项目中,涵盖从最初规划到工...
点击进入详情页
本回答由专业涂覆中心提供
展开全部
根据莱布尼兹定理,三个条件,正负交替,递减,趋于零,都满足,所以收敛
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
考虑它的绝对值。 绝对值收敛,则这个级数也收敛
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询