解分式方程的方法一般有什么

 我来答
如梦随行
2016-11-16 · 知道合伙人教育行家
如梦随行
知道合伙人教育行家
采纳数:18511 获赞数:99149
广东工业大学毕业。2006年从业至今

向TA提问 私信TA
展开全部
1.解分式方程的基本思想
  在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程“转化”为整式方程.即分式方程整式方程
2.解分式方程的基本方法
  (1)去分母法
  去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根.
  产生增根的原因:
  当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解.
  检验根的方法:
  (1)将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等.
  (2)为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去.
  注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公分母为0.
  用去分母法解分式方程的一般步骤:
  (i)去分母,将分式方程转化为整式方程;
  (ii)解所得的整式方程;
  (iii)验根做答
 (2)换元法
  为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程.
  用换元法解分式方程的一般步骤:
  (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;
  (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值;
  (iii)把辅助未知数的值代回原设中,求出原未知数的值;
  (iv)检验做答.
  注意:
  (1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法.它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程.
  (2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法.
  (3)无论用什么方法解分式方程,验根都是必不可少的重要步骤.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式