求摆线的质心用二重积分,怎么计算
∫∫D xdxdy=重心横坐标×D的面积,∫∫D ydxdy=重心纵坐标×D的面积。
当f(x,y)在区域D上可积时,其积分值与分bai割方法无关,可选用平行于坐标zhi轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,由此可以看出二重积分的值是被积函数和积分区域共同确定的。将上述二重积分化成两次定积分的计算,称之为:化二重积分为二次积分或累次积分。
设单位面积质量1,
得到此均质圆弧质量为:(α/(2π))*πa^2=(1/2)αa^2
则:((1/2)αa^2)X=∫∫(a*cosα)*da*adα=∫∫(cosα)a^2dadα
(a从0到a,α从-α/2到α/2)
((1/2)αa^2)X=∫∫(cosα)a^2dadα=∫(cosα)dα ∫a^2da =2sin(α/2)*(1/3)a^3
=(2/3)sin(α/2)a^3
X=(4a/3)sin(α/2)
扩展资料:
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域。
这个函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。
参考资料来源:百度百科-二重积分