求解函数在某点处的微分

 我来答
帐号已注销
2020-12-14 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

dy = f'(x) dx, f'(x)为函数的导数,再将x值带入即可。

y=1/√x+√x

dy=(1/√x+√x)'dx

=(2√x+1/2√x)dx

可微分其实就是可导,证明函数在一点可导可以根据导数的定义,如果是分段函数用导数的定义分别求在该点处的左右导数,左右导数相等则说明可导,也就是可微分。

扩展资料:

自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。

参考资料来源:百度百科-微分

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
热点那些事儿
高粉答主

2020-12-15 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:201万
展开全部

dy = f'(x) dx, f'(x)为函数的导数,再将x值带入即可。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。

一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。

扩展资料

需要求出曲线上一点的斜率时,前人往往采用作图法,将该点的切线画出,以切线的斜率作为该点的斜率。然而,画出来的切线是有误差的,也就是说,以作图法得到的斜率并不是完全准确的斜率。微分最早就是为了从数学上解决这一问题而产生的。

以y=x^2为例,我们需要求出该曲线在(3,9)上的斜率,当△x与△y的值越接近于0,过这两点直线的斜率就越接近所求的斜率m,当△x与△y的值变得无限接近于0时,直线的斜率就是点的斜率。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友8a2f1b5e0
2017-01-01 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.4万
采纳率:89%
帮助的人:2690万
展开全部
B.
设函数法,
舍y=-2x
y'=-2
y'(0)=-2
dy/x=0=y'(0)dx=-2dx。
答:选B。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
白首书屋
2017-01-01 · 超过19用户采纳过TA的回答
知道答主
回答量:33
采纳率:0%
帮助的人:22.7万
展开全部
选B
追答
考的是微分的基本定义dy=f'(x)dx
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式