如图,在△ABC中,∠BAC=90°,AB=AC,D是△ABC内一点,且∠DAC=∠DCA=15°,求证:BD=BA
如图,在△ABC中,∠BAC=90°,AB=AC,D是△ABC内一点,且∠DAC=∠DCA=15°,求证:BD=BA....
如图,在△ABC中,∠BAC=90°,AB=AC,D是△ABC内一点,且∠DAC=∠DCA=15°,求证:BD=BA.
展开
展开全部
证明:在⊿ABC内取点E,使∠EAB=∠EBA=15º,连接DE.
∵∠DAC=∠DCA=15º;AB=AC.(已知).
∴⊿EAB≌⊿DAC(ASA),AE=AD.
又∠EAD=∠BAC-∠EAB-∠DAC=60º.
∴⊿EAD为等边三角形,ED=EA;∠AED=60º.
∵∠AEB=150º.
∴∠DEB=360º-∠AEB-∠AED=150º.
∴∠DEB=∠AEB;又ED=EA(已证),BE=BE.
所以,⊿BED≌⊿BEA(SAS),BD=BA.
∵∠DAC=∠DCA=15º;AB=AC.(已知).
∴⊿EAB≌⊿DAC(ASA),AE=AD.
又∠EAD=∠BAC-∠EAB-∠DAC=60º.
∴⊿EAD为等边三角形,ED=EA;∠AED=60º.
∵∠AEB=150º.
∴∠DEB=360º-∠AEB-∠AED=150º.
∴∠DEB=∠AEB;又ED=EA(已证),BE=BE.
所以,⊿BED≌⊿BEA(SAS),BD=BA.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询