设f(x)=ax2+bx+c(a,b,c∈R),e为自然对数的底数.若f′(x)lnx>f(x)x.则(  )A.f(2)<f(

设f(x)=ax2+bx+c(a,b,c∈R),e为自然对数的底数.若f′(x)lnx>f(x)x.则()A.f(2)<f(e)ln2,2f(e)>f(e2)B.f(2)... 设f(x)=ax2+bx+c(a,b,c∈R),e为自然对数的底数.若f′(x)lnx>f(x)x.则(  )A.f(2)<f(e)ln2,2f(e)>f(e2)B.f(2)<f(e)ln2,2f(e)<f(e2)C.f(2)>f(e)ln2,2f(e)<f(e2)D.f(2)>f(e)ln2,2f(e)>f(e2) 展开
 我来答
壬玄雅4984
2014-09-18 · TA获得超过473个赞
知道答主
回答量:118
采纳率:50%
帮助的人:120万
展开全部
由题意得:x∈(0,+∞),
令函数F(x)=
f(x)
lnx

∴F′(x)=
f(x)lnx?f(x)?
1
x
ln2x

又f′(x)lnx>
f(x)
x

∴F′(x)>0,
∴函数F(x)在(0,+∞)上是增函数,
∴F(e)>F(2),即:
f(e)
lne
f(2)
ln2
,∴f(2)<f(e)ln2,
F(e)<F(e2),即:
f(e)
lne
f(e2)
lne2
,∴2f(2)<f(e2);
故答案为:B.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式