已知:如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点.求证:(1)∠DAG

已知:如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点.求证:(1)∠DAG=∠DCG;(2)GC⊥CH.... 已知:如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点.求证:(1)∠DAG=∠DCG;(2)GC⊥CH. 展开
 我来答
手机用户40320
2014-11-03 · 超过49用户采纳过TA的回答
知道答主
回答量:96
采纳率:100%
帮助的人:87.2万
展开全部
解答:证明:(1)∵ABCD为正方形,
∴AD=DC,∠ADC=90°,∠ADB=∠CDB=45°,
又DG=DG,
∴△ADG≌△CDG,
∴∠DAG=∠DCG;

(2)∵ABCD为正方形,
∴AD∥BE,
∴∠DAG=∠E,又∠DAG=∠DCG,
∴∠E=∠DCG,
∵H为直角三角形CEF斜边EF边的中点,
∴CH=HE=
1
2
EF,
∴∠HCE=∠E,
∴∠DCG=∠HCE,
又∠FCH+∠HCE=90°,
∴∠FCH+∠DCG=90°,即∠GCH=90°,
∴GC⊥CH.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式