2个回答
展开全部
∵函数f(x)是定义在(0,+∞)上的单调递增函数,f (x)=f(x/y)+f(y),f(3)=1
由f (x)=f(x/y)+f(y)可知,f (x)- f(y)=f(x/y), f (xy)=f(x)+f(y)也成立
∴f (3)=f(3/1)+f(1)==>f(1)=0
显然此函数为对数函数
∵f(3)=1,∴对数的底数为3
f(x)+f(x-1/5)=f(x^2-x/5)>=2
则x^2-x/5>=9==> 5x^2-x-45>=0
X1=(1-√901)/10, X2=(1+√901)/2
∴满足f(x)+f(x-1/5)>=2的取值范围为x>=(1+√901)/2
在整个定义域内不满足f(x)+f(x-1/5)>=2
由f (x)=f(x/y)+f(y)可知,f (x)- f(y)=f(x/y), f (xy)=f(x)+f(y)也成立
∴f (3)=f(3/1)+f(1)==>f(1)=0
显然此函数为对数函数
∵f(3)=1,∴对数的底数为3
f(x)+f(x-1/5)=f(x^2-x/5)>=2
则x^2-x/5>=9==> 5x^2-x-45>=0
X1=(1-√901)/10, X2=(1+√901)/2
∴满足f(x)+f(x-1/5)>=2的取值范围为x>=(1+√901)/2
在整个定义域内不满足f(x)+f(x-1/5)>=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询