已知公差不为0的等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)
已知公差不为0的等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记bn=8an?an+1,数列{bn}的前n项和为Sn...
已知公差不为0的等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记bn=8an?an+1,数列{bn}的前n项和为Sn,当x∈[2,4]时,对于任意的正整数n,不等式x2+mx+m≥Sn恒成立,求m的取值范围.
展开
1个回答
展开全部
(Ⅰ)设等差数列的公差是d,
∵a1,a2,a5成等比数列,即2,2+d,2+4d成等比数列,
∴(2+d)2=2(2+4d),即d2=4d,解得d=0或d=4,
∵公差d不为0,∴d=4.
∴an=a1+(n-1)d=2+4(n-1)=4n-2,
即的通项公式为an=4n-2.
(Ⅱ)∵
∴Sn=1?
+
?
+…+
-
=1-
<1,
当x∈[2,4]时,对于任意的正整数n,不等式x2+mx+m≥Sn恒成立,
即x2+mx+m≥1,则(x+1)(x-1+m)≥0,
当x∈[2,4]时,x+1>0,
∴不等式等价为x-1+m≥0,
即m≥1-x在x∈[2,4]时恒成立,
∵1-x∈[-3,-1]
即m≥-1.
∵a1,a2,a5成等比数列,即2,2+d,2+4d成等比数列,
∴(2+d)2=2(2+4d),即d2=4d,解得d=0或d=4,
∵公差d不为0,∴d=4.
∴an=a1+(n-1)d=2+4(n-1)=4n-2,
即的通项公式为an=4n-2.
(Ⅱ)∵
|
∴Sn=1?
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n?1 |
1 |
2n+1 |
1 |
2n+1 |
当x∈[2,4]时,对于任意的正整数n,不等式x2+mx+m≥Sn恒成立,
即x2+mx+m≥1,则(x+1)(x-1+m)≥0,
当x∈[2,4]时,x+1>0,
∴不等式等价为x-1+m≥0,
即m≥1-x在x∈[2,4]时恒成立,
∵1-x∈[-3,-1]
即m≥-1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询