积分 高等数学 详细过程
1个回答
展开全部
x³-1=(x-1)(x²+x+1)
用待定系数法:
1/(x³-1)=A/(x-1)+(Bx+C)/(x²+x+1)
得A=1/3,B=-1/3,C=-2/3
=1/3(x-1)-(x+2)/3(x²+x+1)
=1/3(x-1)-(2x+1)/6(x²+x+1)-1/2(x²+x+1)
∫1/(x³-1)dx
=∫dx/(x-1)[(x+½)²+¾]
=∫dx/3(x-1) - ∫(2x+1)dx/6(x²+x+1)
- (1/√3)∫d[(2x+1)/√3]/{[(2x+1)/√3]²+1}
=(⅓)ln|x-1|+(1/6)ln|x²+x+1|-(1/√3)arctan[(2x+1)/√3]+C
用待定系数法:
1/(x³-1)=A/(x-1)+(Bx+C)/(x²+x+1)
得A=1/3,B=-1/3,C=-2/3
=1/3(x-1)-(x+2)/3(x²+x+1)
=1/3(x-1)-(2x+1)/6(x²+x+1)-1/2(x²+x+1)
∫1/(x³-1)dx
=∫dx/(x-1)[(x+½)²+¾]
=∫dx/3(x-1) - ∫(2x+1)dx/6(x²+x+1)
- (1/√3)∫d[(2x+1)/√3]/{[(2x+1)/√3]²+1}
=(⅓)ln|x-1|+(1/6)ln|x²+x+1|-(1/√3)arctan[(2x+1)/√3]+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询