4个回答
展开全部
原式=ln[│x│/√(x²+1)]+C,解答过程如下:
原式=∫[1/x(x²+1)]dx
=∫[1/x-x/(x²+1)]dx
=∫1/xdx-∫x/(x²+1)]dx
=ln│x│-1/2ln(x²+1)+C
=ln[│x│/√(x²+1)]+C。 (C是积分常数)
扩展资料:
不定积分求法:
1、积分公式法。直接利用积分公式求出不定积分。
2、换元积分法。换元积分法可分为第一类换元法与第二类换元法。
(1)第一类换元法(即凑微分法)。通过凑微分,最后依托于某个积分公式。进而求得原不定积分。
(2)第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。
3、分部积分法。设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu
两边积分,得分部积分公式∫udv=uv-∫vdu。
参考资料来源:百度百科-不定积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询