关于数列极限的定义
数列极限的定义是要求"N>0,n>N"。可是N=[1/4e-1/2]这里取e=1时,N<0。这不是违反了数列极限的定义吗?...
数列极限的定义是要求"N>0,n>N"。可是N=[1/4e-1/2]这里取e=1时,N<0。这不是违反了数列极限的定义吗?
展开
3个回答
展开全部
数列有极限,即当n趋向无穷大时,数列的项Xn无限趋近于或等于a,
任意取一个值ε,是表明无论ε是多小的数,Xn与a的差总小于ε,就是Xn无限趋近于或等于a。
看n>N时,注意原话是:……对于任意小的ε,总存在正整数N,使得当n>N时,|Xn-a|<ε,……。这是表明,无论ε多小,当n足够大时,都可以满足|Xn-a|<ε。就是即使ε小到非常小(趋近于0),当n大到足够大的程度(趋向于无穷大)也会满足Xn与a的差小于ε(趋近于0)。
扩展资料:
等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。
求极限时,使用等价无穷小的条件:
被代换的量,在取极限的时候极限值为0;
被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
展开全部
数列极限用通俗的语言来说就是:对于数列an,如果它的极限是a,那么,不管给出多小的正数ε,总能找到正整数N,只要数列的下标n>N,就能保证|an-a|<ε。
比如对于这样一个数列
an=n(当n《100时) 或an=1/n (当n>100时)
这个数列的极限是0。当对于任意给定的正数比如1/3,数列下标在1~100时,|an|>ε=1/3,但只要n>N=100,后面的所有项都满足|an|<1/3
从这个意义来说,数列有没有极限,前面的有限项(不管这有限项有多大)不起决定作用。
比如对于这样一个数列
an=n(当n《100时) 或an=1/n (当n>100时)
这个数列的极限是0。当对于任意给定的正数比如1/3,数列下标在1~100时,|an|>ε=1/3,但只要n>N=100,后面的所有项都满足|an|<1/3
从这个意义来说,数列有没有极限,前面的有限项(不管这有限项有多大)不起决定作用。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |