设数列{an}中,a1=6,an-a(n-1)=(an-1)/n+n+1
展开全部
解:
由于:
an-a(n-1)=a(n-1)/n+(n+1)
则:an=[(n+1)/n]*a(n-1)+(n+1)
则:an/(n+1)=a(n-1)/n
+1
设bn=an/(n+1)
则:b(n)
-b(n-1)=1
则{bn}为公差为1的等差数列
则:bn=b1+(n-1)*1=a1/2
+(n-1)=n+2
由于:bn=an/(n+1)=(n+2)
则:an=(n+1)(n+2)=n^2+3n+2
happy
new
year!
由于:
an-a(n-1)=a(n-1)/n+(n+1)
则:an=[(n+1)/n]*a(n-1)+(n+1)
则:an/(n+1)=a(n-1)/n
+1
设bn=an/(n+1)
则:b(n)
-b(n-1)=1
则{bn}为公差为1的等差数列
则:bn=b1+(n-1)*1=a1/2
+(n-1)=n+2
由于:bn=an/(n+1)=(n+2)
则:an=(n+1)(n+2)=n^2+3n+2
happy
new
year!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询