已知不等式1/n+1+1/n+2+1/n+3+……+1/2n>a对于一切大于1的自然数n都成立,求实数a的取值范围

_idoknow
2010-08-22 · TA获得超过659个赞
知道小有建树答主
回答量:367
采纳率:0%
帮助的人:236万
展开全部
记f(n)=1/(n+1)+1/(n+2)+……+1/2n
则f(n+1)-f(n)=1/(2n+1)+1/(2n+2)-1/(n+1)
=1/(2n+1)-1/(2n+2)
=1/(2n+1)(2n+2)
>0
因此f(n)随n单调增加
故f(n)>a对于一切大于1的自然数n都成立等价于a<f(2)=1/3+1/4=7/12
即a的取值范围是(-∞,7/12)
花前月下的白色
2010-08-22 · TA获得超过4702个赞
知道小有建树答主
回答量:523
采纳率:0%
帮助的人:851万
展开全部
由柯西不等式:
[(n+1)+(n+2)+...+(2n)][1/(n+1)+1/(n+2)+...+1/(2n)]>(1+1+...+1)^2=(n)^2{注,一共有n个1,而且等号显然不成立}
而由等差数列求和公式有:(n+1)+(n+2)+...+(2n)=(2n+n+1)n/2=(3n+1)n/2
于是1/(n+1)+1/(n+2)+...+1/(3n)>(2n^2)/[n(3n+1)]=2n/(3n+1)
所以a<=2n/(3n+1)<2/3

a的取值范围是(-∞,2/3)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式