反常积分的计算

 我来答
睢鸠晓曼040
2020-12-30 · TA获得超过4976个赞
知道大有可为答主
回答量:6804
采纳率:94%
帮助的人:151万
展开全部
反常积分计算的方法有:

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。

正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理
酷猫小游戏

2020-12-19 · TA获得超过6728个赞
知道大有可为答主
回答量:4075
采纳率:88%
帮助的人:126万
展开全部
给出一个反常积分,并告诉我们该反常积分收敛,则我们可以得到哪些信息。

通过反常积分的概念,可以知道这道题指的是在无穷区间的反常积分(只要一看积分区间有∞存在,即可知道该反常积分为在无穷区间上的反常积分),如果右边的极限存在,就称该反常积分收敛,这个概念说明该反常积分存在极限,这道题反常积分的瑕点为1。

那我们便可以将该反常积分分为两个区间来计算,一个区间是位于(0,1),另一个区间则是位于(1,+∞),我们可以先对第一个区间进行判断,因为要让该反常积分收敛,必须让两个区间的积分都收敛才可以。(一个是无界函数的反常积分,另一个则是无穷区间的反常积分。)

如果说这两个反常积分有一个不存在,就说明该反常积分不存在(发散),反之,要说明该反常积分存在(收敛),说明两个反常积分都要存在才可以。

由第一个区间判断可以得到,a<1;由第二区间判断可以得到当a+b>1时,收敛。

最后得到的结果便是,a<1,a+b>1,该反常积分收敛。
虽然有这道实例的支撑,但我对反常积分还是不够理解,直到我看到了瑕积分的判敛性定理:

定理一,f(x)在区间(a,b]上连续并且f(x)>=0,设该区间趋向于a的极限存在,那就可以得到当x的幂次方小于1,该反常积分收敛,根据这个定理我们就能够得到a<1这个结果的存在。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式