展开全部
(1)证明lim(x->x0)x=x0
证:对任意的ε>0,取δ≤ε。
于是,对任意的ε>0,总存在正数δ≤ε。当0<│x-x0│<δ时,有│x-x0│<ε。
故lim(x->x0)x=x0。
(2)证明lim(x->x0)C=C
证:对任意的ε>0,总存在正数δ。当0<│x-x0│<δ时,有│C-C│=0<ε。
故lim(x->x0)C=C。
证:对任意的ε>0,取δ≤ε。
于是,对任意的ε>0,总存在正数δ≤ε。当0<│x-x0│<δ时,有│x-x0│<ε。
故lim(x->x0)x=x0。
(2)证明lim(x->x0)C=C
证:对任意的ε>0,总存在正数δ。当0<│x-x0│<δ时,有│C-C│=0<ε。
故lim(x->x0)C=C。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询