在离散数学逻辑推理中,将结论的否定作为前提引入要如何进行推理?最后是要推出什么?

如果推出了前提里的一个析取式的所有变元的否定都是真(既该析取式的变元都是假)能得出结论吗?... 如果推出了前提里的一个析取式的所有变元的否定都是真(既该析取式的变元都是假) 能得出结论吗? 展开
 我来答
剧琴音0gL
2020-08-26 · TA获得超过510个赞
知道小有建树答主
回答量:1775
采纳率:0%
帮助的人:164万
展开全部
反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。 反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是: 第一步,反设:作出与求证结论相反的假设; 第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。 在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆
编辑本段适用范围:
证明一些命题,且正面证明有困难,情况多或复杂,而逆否命题则比较浅显。 具体方法(E.G): 命题r=在C下,若A则B 反证:若A则¬B 证明¬B与A的矛盾 举例:欲证“若P则Q”为真命题,从否定其结论即“非Q”出发,经过正确的逻辑推理导出矛盾,从而“非Q”为假,即原命题为真,这样的证明方法称为反证法, 先提出和定理中的结论相反的假定,然后从这个假定中得出和已知条件相矛盾的结果来。
编辑本段定义
【反证法】 间接论证的一种。先论证与原论题相矛盾的论题即反论题为假,然后根据排中律确定原论题为真。其论证过程可以表示如下: [求证] A(原论题) [证明] (1)设非A真(非A为反论题) (2)如果非A,则B(B为由非A推出的论断) (3)非B(已知) (4)所以,并非非A(根据充分条件假言推理的否定后件式) (5)所以,A(非非A=A)。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式