求解一高中数学题
设P为椭圆弧(x/5)^2+(y/3)^2=1(x、y均大于0)上的一动点,又已知一定点A(10,6),以pA为矩形的对角线的两端点,矩形的边平行于坐标轴,求此矩形的面积...
设P为椭圆弧(x/5)^2+(y/3)^2=1(x、y均大于0)上的一动点,又已知一定点A(10,6),以pA为矩形的对角线的两端点,矩形的边平行于坐标轴,求此矩形的面积的最值。
答案:最大值为30,最小值为(135-60√2)/2。 求过程 希望具体些啊
√2 为 根号2 展开
答案:最大值为30,最小值为(135-60√2)/2。 求过程 希望具体些啊
√2 为 根号2 展开
展开全部
(x/5)^2+(y/3)^2=1(x、y均大于0)
可设:x=5cost, y=3sint, 0<=t<=pi/2
矩形的面积S
=(10-x)(6-y)
=15(2-cost)(2-sint)
=(15/2)[8-4(sint+cost)+2sintcost]
=(15/2)[7-4(sint+cost+((sint)^2+2sintcost+(cost)^2)]
=(15/2)[(sint+cost)^2-4(sint+cost)+7]
=(15/2)[(sint+cost-2)^2+3]
=(15/2){2[sin(t+pi/4)-√2]^2+3}
而:pi/4<=t+pi/4<=3pi/4
所以:√2/2<=sin(t+pi/4)<=1
-√2/2<=sin(t+pi/4)-√2<=1-√2
(√2-1)^2<=[sin(t+pi/4)-√2]^2<=1/2
3-2√2<=[sin(t+pi/4)-√2]^2<=1/2
所以:(15/2)[2(3-2√2)+3]<=S<=(15/2)[2*(1/2)+3]
(1/2)(135-60√2)<=S<=30
最大值为30
最小值为(135-60√2)/2
可设:x=5cost, y=3sint, 0<=t<=pi/2
矩形的面积S
=(10-x)(6-y)
=15(2-cost)(2-sint)
=(15/2)[8-4(sint+cost)+2sintcost]
=(15/2)[7-4(sint+cost+((sint)^2+2sintcost+(cost)^2)]
=(15/2)[(sint+cost)^2-4(sint+cost)+7]
=(15/2)[(sint+cost-2)^2+3]
=(15/2){2[sin(t+pi/4)-√2]^2+3}
而:pi/4<=t+pi/4<=3pi/4
所以:√2/2<=sin(t+pi/4)<=1
-√2/2<=sin(t+pi/4)-√2<=1-√2
(√2-1)^2<=[sin(t+pi/4)-√2]^2<=1/2
3-2√2<=[sin(t+pi/4)-√2]^2<=1/2
所以:(15/2)[2(3-2√2)+3]<=S<=(15/2)[2*(1/2)+3]
(1/2)(135-60√2)<=S<=30
最大值为30
最小值为(135-60√2)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询