已知斜三棱柱ABC-A1B1C1,AC⊥BC,AC=BC=2,A1在底面ABC上的射影恰好为Ac的中点D,又已知BA1⊥AC1;

求证AC1⊥A1C,求CC1到平面A1AB的距离,求二面角A-A1B-C的大小... 求证AC1⊥A1C,
求CC1到平面A1AB的距离,
求二面角A-A1B-C的大小
展开
wudi343
2010-08-23 · TA获得超过774个赞
知道小有建树答主
回答量:616
采纳率:0%
帮助的人:569万
展开全部
1、证明:
∵A1在底面ABC上的射影恰为AC的中点D
∴A1D⊥平面ABC
∴A1D⊥BC
∵BC⊥AC
∴BC⊥平面ACC1A1
∴BC⊥AC1
∵BA1⊥AC1,AC1、AB相交于A
∴AC1⊥平面A1BC
2、解由AC1⊥平面A1BC
得AC1⊥A1C
∴四边形ACC1A1为菱形
∴AC=AA1=2
V(A1-ABC)=1/3*1/2*2*2*(根号3)
V(C-AA1B)=1/3*1/2*(2根号2)*((根号14)/2)*H
H=根号(12/7)
H即为C到平面AA1B的距离
由CC1‖平面AA1B
∴CC1到平面A1AB的距离为根号(12/7)
3、解由AC1⊥平面A1BC
设AC1交A1C于O
在平面A1BC中过O作OP⊥A1B,连接AP
∵AC1⊥平面A1BC,且OP⊥A1B
∴∠APO=二面角A—A1B—C
∵BC⊥平面ACC1A1
∴BC⊥A1C
∵四边形ACC1A1为菱形
∴OP=(根号1/2)A1O=(根号1/2)A1C/2=(根号1/2)
AO=(根号3)A1O=(根号3)A1C/2=(根号3)
tg∠APO=AO/OP=根号6
则∠APO=arctg(根号6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式