设f(x)有二阶连续导数且f'(x)=0,lim(x趋向于0)f''(x)/|x|=1则
展开全部
f(x) = (1/6)|x^3|
分析:
如果x>0, f(x) = (1/6)x^3, f'(0) = 0, f''(x) = x, and f''(x)/|x|=1 当x->0+.
如果x
分析:
如果x>0, f(x) = (1/6)x^3, f'(0) = 0, f''(x) = x, and f''(x)/|x|=1 当x->0+.
如果x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |