a>0,b>0;a+b=10,求根号下a的平方+4与根号下b的平方+9之和的最小值
1个回答
展开全部
因为根号下a的平方+4与根号下b的平方+9都大于0
所以根号下a的平方+4与根号下b的平方+9>=2((a^2+4)(b^2+9))^(1/4)
仅当a^2+4=b^2+9时有最小值
a^2-b^2=9-4
(a+b)(a-b)=5
因为a>0,b>0
a=21/4
b=19/4
最小值=2((441/16+64/16)(361/16+144/16))^(1/4)
=2((505/16)(505/16))^(1/4)
=根号505
所以根号下a的平方+4与根号下b的平方+9>=2((a^2+4)(b^2+9))^(1/4)
仅当a^2+4=b^2+9时有最小值
a^2-b^2=9-4
(a+b)(a-b)=5
因为a>0,b>0
a=21/4
b=19/4
最小值=2((441/16+64/16)(361/16+144/16))^(1/4)
=2((505/16)(505/16))^(1/4)
=根号505
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询