已知:x=[(√5)+1]/2,求(x^3+5x+1)/x^5的值~
1个回答
展开全部
由已知变形,得
2x=√5+1
2x-1=√5
两边同时平方,得
4x^2-4x+1=5
x^2-x-1=0
x^2=x+1
上式两边同乘以x,得:
x^3=x^2+x=(x+1)+x=2x+1············注:将x^2=x+1代入;
上式两边又再同时乘以x^2,得
x^5=2x^3+x^2=2(2x+1)+(x+1)=5x+3·····注:将x^3=2x+1和x^2=x+1分别代入;
所以
(x^3+5x+1)/x^5
=(2x+1+5x+1)/(5x+3)·······注:将x^3=2x+1和x^5=5x+3分别代入;
=(7x+2)/(5x+3)
=(14x+4)/(10x+6)······注:为了方便,分子分母同乘以2;
=[7(2x-1)+11]/[5(2x-1)+11]······注:将2x-1=√5代入;
=(7√5+11)/(5√5+11)
=(7√5+11)(5√5-11)/[(5√5+11)(5√5-11)]
=(54-22√5)/(125-121)
=(27-11√5)/2
为了让您看更清楚一些,写得比较详细了点,实际解题时部分过程可以省略.
2x=√5+1
2x-1=√5
两边同时平方,得
4x^2-4x+1=5
x^2-x-1=0
x^2=x+1
上式两边同乘以x,得:
x^3=x^2+x=(x+1)+x=2x+1············注:将x^2=x+1代入;
上式两边又再同时乘以x^2,得
x^5=2x^3+x^2=2(2x+1)+(x+1)=5x+3·····注:将x^3=2x+1和x^2=x+1分别代入;
所以
(x^3+5x+1)/x^5
=(2x+1+5x+1)/(5x+3)·······注:将x^3=2x+1和x^5=5x+3分别代入;
=(7x+2)/(5x+3)
=(14x+4)/(10x+6)······注:为了方便,分子分母同乘以2;
=[7(2x-1)+11]/[5(2x-1)+11]······注:将2x-1=√5代入;
=(7√5+11)/(5√5+11)
=(7√5+11)(5√5-11)/[(5√5+11)(5√5-11)]
=(54-22√5)/(125-121)
=(27-11√5)/2
为了让您看更清楚一些,写得比较详细了点,实际解题时部分过程可以省略.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询