常微分方程求解y'''+y'=sinx+xcosx求其通解?
1个回答
展开全部
y'''+y'=sinx+xcosx=(xsinx)'
两边积分得
y''+y=xsinx+C3
把它分成两个微分方程
y''+y=xsinx和y''+y=C3
第二个的特解是y=C3
求出来第一个的通解就可以了
y''+y=xsinx
齐次的特征方程为
r^2+1=0
r=±1
y=C1cosx+C2sinx
设特解是y=x(acosx+bsinx)
y'=acosx-axsinx+bsinx+bxcosx
=(a+bx)cosx+(-ax+b)sinx
y''=bcosx-(a+bx)sinx-asinx+(-ax+b)cosx
=(-a-bx)sinx+(-ax+2b)cosx
代入原方程求a,b就可以了,有点麻烦,7,厄,1,常微分方程求解y'''+y'=sinx+xcosx求其通解
另一个也是刚刚提问的
两边积分得
y''+y=xsinx+C3
把它分成两个微分方程
y''+y=xsinx和y''+y=C3
第二个的特解是y=C3
求出来第一个的通解就可以了
y''+y=xsinx
齐次的特征方程为
r^2+1=0
r=±1
y=C1cosx+C2sinx
设特解是y=x(acosx+bsinx)
y'=acosx-axsinx+bsinx+bxcosx
=(a+bx)cosx+(-ax+b)sinx
y''=bcosx-(a+bx)sinx-asinx+(-ax+b)cosx
=(-a-bx)sinx+(-ax+2b)cosx
代入原方程求a,b就可以了,有点麻烦,7,厄,1,常微分方程求解y'''+y'=sinx+xcosx求其通解
另一个也是刚刚提问的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询