∫sint²dt怎么计算
1个回答
2022-12-11 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
答案是t/2-(sin2t)/4+C
具体步骤如下:
∫sin²tdt =∫(1-cos2t)/2 dt
=∫1/2dt-∫(cos2t)/2 dt
=∫1/2dt-1/4 d(sin2t)
=t/2-(sin2t)/4+C
(C为任意常数)
扩展资料
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询