函数y= cosx, y= sinx, y= tanx的对称轴是什么?
y=sinx对称轴为x=kπ+ π/2 (k为整数),对称中心为(kπ,0)(k为整数)。
y=cosx对称轴为x=kπ(k为整数),对称中心为(kπ+ π/2,0)(k为整数)。
y=tanx对称中心为(kπ,0)(k为整数),无对称轴。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ = kπ+ π/2 解出x即可求出对称轴,令ωx+Φ = kπ,解出的x就是对称中心的横坐标,纵坐标为0。(若函数是y=Asin(ωx+Φ)+ k 的形式,那此处的纵坐标为k )
余弦型,正切型函数类似。
扩展资料:
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
设α为任意角,终边相同的角的同一三角函数的值相等。
(1)sin(2kπ+α)=sinα(k∈Z)
(2)cos(2kπ+α)=cosα(k∈Z)
(3)tan(2kπ+α)=tanα(k∈Z)
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系。
(1)sin(π+α)=-sinα
(2)cos(π+α)=-cosα
(3)tan(π+α)=tanα