常用的诱导公式有以下几组:
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
扩展资料:
诱导公式可以概括为:
对于π/2*k ±α(k∈Z)的三角函数值,当k是偶数时,得到α的同名函数值,即函数名不改变;当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)
例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。所以sin(2π-α)=-sinα
上述的记忆口诀是:奇变偶不变,符号看象限。公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆,水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀
“一全正;二正弦(余割);三两切;四余弦(正割)”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部是“-”;
第三象限内切函数是“+”,弦函数是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.
上述记忆口诀,一全正,二正弦,三内切,四余弦
1、sin(-α) = -sinα、cos(-α) = cosα、tan (-a)=-tanα、sin(π/2-α) = cosα
2、cos(π/2-α) = sinα、sin(π/2+α) = cosα、cos(π/2+α) = -sinα、sin(π-α) = sinα
3、cos(π-α) = -cosα、sin(π+α) = -sinα、cos(π+α) = -cosα、tanA= sinA/cosA
4、tan(π/2+α)=-cotα、tan(π/2-α)=cotα、tan(π-α)=-tanα
5、tan(π+α)=tanα
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值
扩展资料:
变化规律
1、正弦值在
随角度增大(减小)而增大(减小),在
随角度增大(减小)而减小(增大);
2、余弦值在
随角度增大(减小)而增大(减小),在
随角度增大(减小)而减小(增大);
3、正切值在
随角度增大(减小)而增大(减小);
4、余切值在
随角度增大(减小)而减小(增大);
正割值在
随着角度的增大(或减小)而增大(或减小);
5、余割值在
随着角度的增大(或减小)而减小(或增大)。
参考资料:百度百科-三角函数
平方关系:三角函数sin^2(α)+cos^2(α)=1
cos^2(a)=1-sin^2(a)
tan^2(α)+1=1/cos^2(α)
2sin^2(a)=1-cos2(a)
积的关系:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
商的关系:
sinα/cosα=tanα
三角函数
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(kπ+α)=tanα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα (以上k∈Z)
详细的都在里面
参考资料: http://baike.baidu.com/view/91555.htm