在三角形ABC中 A B C分别对应a b c 证明(a^2-b^2)/c^2=[sin(A-B)]/sinC
2个回答
展开全部
正弦定理
a/sinA=b/sinB=c/sinC=k
a=ksinA
b=ksinB
c=ksinC
a^2-b^2/c^2=(sinA^2-sinB^2)/sinC^2
sin(A-B)/sinc
=sin(A-B)sinC/sinc^2
=sin(A-B)sin(A+B)/sinc^2
=(sinAcosB-sinBcosA)(sinAcosB+sinBcosA)/sinc^2
=(sinA^2cosB^2-sinB^2cosA^2)/sinc^2
=(sinA^2(1-sinB^2)-sinB^2(1-sinA^2))/sinc^2
=(sinA^2-sinB^2)/sinC^2
两边相等,原式得证
a/sinA=b/sinB=c/sinC=k
a=ksinA
b=ksinB
c=ksinC
a^2-b^2/c^2=(sinA^2-sinB^2)/sinC^2
sin(A-B)/sinc
=sin(A-B)sinC/sinc^2
=sin(A-B)sin(A+B)/sinc^2
=(sinAcosB-sinBcosA)(sinAcosB+sinBcosA)/sinc^2
=(sinA^2cosB^2-sinB^2cosA^2)/sinc^2
=(sinA^2(1-sinB^2)-sinB^2(1-sinA^2))/sinc^2
=(sinA^2-sinB^2)/sinC^2
两边相等,原式得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询