相关系数与决定系数的关系,它们的意义分别是什么 15
决定系数是相关系数的二次幂。因此,也可以在求得可决系数的基础上计算相关系数,方法是将可决系数开平方,至于平方根的符号,则取与回归方程斜率b相同的符号。正是因为存在这样的关系,用r²作为可决系数的符号,而没有另用别的字母。
决定系数意义:拟合优度越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。
相关系数意义:用以反映变量之间相关关系密切程度的统计指标。按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
扩展资料
相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。
因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。
判定系数只是说明列入模型的所有解释变量对因变量的联合的影响程度,不说明模型中单个解释变量的影响程度。
参考资料来源:百度百科-决定系数
参考资料来源:百度百科-可决系数
参考资料来源:百度百科-相关系数
2018-06-11 广告
决定系数是相关系数的二次幂。因此,也可以在求得可决系数的基础上计算相关系数,方法是将可决系数开平方,至于平方根的符号,则取与回归方程斜率b相同的符号。正是因为存在这样的关系,用r²作为可决系数的符号,而没有另用别的字母。
决定系数意义:拟合优度越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。
相关系数意义:用以反映变量之间相关关系密切程度的统计指标。按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
相关系数和回归系数的区别:
1、含义不同
相关系数:是研究变量之间线性相关程度的量。
回归系数:在回归方程中表示自变量x 对因变量y 影响大小的参数。
2、应用不同
相关系数:说明两变量间的相关关系。
回归系数:说明两变量间依存变化的数量关系。
3、单位不同
相关系数:一般用字母r表示 ,r没有单位。
回归系数:一般用斜率b表示,b有单位。
决定系数是相关系数的平方。
相关系数(R)表示两个变量的相关性(不一定是线性相关,也有可能是其他类型的相关),取值范围为[-1,1]。-1代表完全负相关,1代表完全正相关,0代表两个变量不相关。
决定系数(R^2)表示函数的拟合优度,取值范围为[0,1]。越接近1表明函数的拟合效果越好。
决定系数的意义是变量A可以解释变量B方差的多少。
因此,相关系数的意义(为正的情况)就是变量A可以解释变量B标准差的多少。
更直接的解释是,由于变量A的变动,变量B增加了C,而这C中有r的比例是因为变量A的变动造成的。
举例:
比如模型中责任心对工作绩效一般有10%的预测力,也就是说决定系数是0.1。因此,推论到上述直接的解释上,也就意味着某人工作绩效量增加了C,这C中有大约32%是因为某人责任心的增加而增加的。