如图 在三角形abc中,∠acb=90°,点e为ab中点,连接ce,过点e作ed⊥bc于点d,在de的延
如图在三角形abc中,∠acb=90°,点e为ab中点,连接ce,过点e作ed⊥bc于点d,在de的延长线上取一点f,使af=ce,求证:四边形acef是平行四边形、...
如图 在三角形abc中,∠acb=90°,点e为ab中点,连接ce,过点e作ed⊥bc于点d,在de的延长线上取一点f,使af=ce,求证:四边形acef是平行四边形、
展开
3个回答
展开全部
CE是斜边的中线:CE=AE,所以∠ACE=∠CAE,条件中给出AF=CE,所以∠F=∠AEF,FE//AC,所以∠ACE=∠CAE=∠F=∠AEF
再加一个公共边AE,就有△FAE≌△CEA,所以FE=AC,所以四边形为平行四边形
再加一个公共边AE,就有△FAE≌△CEA,所以FE=AC,所以四边形为平行四边形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:在△ABC中,∠ACB=90° 点E是AB 的中点
∴CE=AE=BE
∠ECA=∠EAC
∵FA=CE CE=AE
∴FA=AE
∴∠EFA=∠FEA
∵FD⊥BC AC⊥BC
∴FD‖AC
∴∠FEA=∠EAC
∴∠EFA=∠ECA
在△ECA和△AFE中
∠EAC=∠AEF
∠ECA=∠AFE
CE=AF
∴△ECA≌△AFE(AAS)
∴∠AEC=∠FAE
∴FA‖EC
∴FA平行且相等于EC
∴四边形ACEF是平行四边形
∴CE=AE=BE
∠ECA=∠EAC
∵FA=CE CE=AE
∴FA=AE
∴∠EFA=∠FEA
∵FD⊥BC AC⊥BC
∴FD‖AC
∴∠FEA=∠EAC
∴∠EFA=∠ECA
在△ECA和△AFE中
∠EAC=∠AEF
∠ECA=∠AFE
CE=AF
∴△ECA≌△AFE(AAS)
∴∠AEC=∠FAE
∴FA‖EC
∴FA平行且相等于EC
∴四边形ACEF是平行四边形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询