在三角形ABC中、已知B=45度、D是BC边上的一点、AD=10 AC=14 DC=6 求AB的长

亥碧春uk
推荐于2017-10-04 · TA获得超过2489个赞
知道小有建树答主
回答量:507
采纳率:0%
帮助的人:684万
展开全部
先判断一下∠ADC是否为钝角。

AD²+CD²=10²+6²=136
AC²=14²=196
∴AC²>AD²+CD² 即∠ADC为钝角。

过点A作AE⊥AC于E。设ED=x

则AE²=AC²-EC²=AD²-ED²
14²-(6+x)²=10²-x²
196-36-12x=100
12x=60
x=5

∴AE²=AD²-ED²=10²-5²=75
∴AE=5√3

又∵∠B=45°
∴AB=AE*√2=5√6
匿名用户
2010-09-10
展开全部
AE²=AC²-EC²=AD²-ED²
14²-(6+x)²=10²-x²
196-36-12x=100
12x=60
x=5

∴AE²=AD²-ED²=10²-5²=75
∴AE=5√3

又∵∠B=45°
∴AB=AE*√2=5√6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式