函数f(x)在区间[a,b]上连续是f(x)可积的( )条件
6个回答
展开全部
结果为:必要条件
解题过程如下:
扩展资料
性质:
若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间。此时也说函数是这一区间上的单调函数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2)。那么就说f(x)在这个区间上是增函数。
相反地,如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么f(x)在这个区间上是减函数。
函数在某一区间内的函数值y,随自变量x的值增大而增大(或减小)恒成立。若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间。此时也说函数是这一区间上的单调函数。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连续是可积的充分非必要条件,不要信楼上那几个.
因为在区间上连续就一定有原函数,根据N-L公式得定积分存在.
反之,函数可积不能推出连续,只要函数在[a,b]上单调,或在[a,b]上有界且间断点个数有限,就可以积分.
因为在区间上连续就一定有原函数,根据N-L公式得定积分存在.
反之,函数可积不能推出连续,只要函数在[a,b]上单调,或在[a,b]上有界且间断点个数有限,就可以积分.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
推荐回答连续是可积的充分非必要条件,不要信楼上那几个. 因为在区间上连续就一定有原函数,根据N-L公式得定积分存在. 反之,函数可积不能推出连续,只要函数在[a,b]上单调,或在[a,b]上有界且间断点个数有限,就可以积分.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
必要不充分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询