如图,在平行四边形ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.
(1)求证:四边形AFCE是平行四边:(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明,若不成立,请说明理由。快~~~...
(1)求证:四边形AFCE是平行四边:
(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明,若不成立,请说明理由。
快~~~ 展开
(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明,若不成立,请说明理由。
快~~~ 展开
展开全部
证明:方法一:∵AE=AD,CF=CB,
∴∠E=∠ADE,∠CBF=∠F.
在▱ABCD中,∠ADC=∠ABC,
∴∠ADE=∠CBF.
∴∠E=∠F.
在▱ABCD中,CD∥AB,
∴∠E+∠EAF=180°,
∴∠F+∠EAF=180°.
∴AE∥CF.
又∵CE∥AF,
∴四边形AFCE是平行四边形.
方法二(主要步骤):
∵四边形ABCD是平行四边形,
∴AD=BC,∠ADC=∠ABC,
∵AE=AD,CF=CB,
∴AE=AD=CF=CB,
∴∠E=∠ADE=∠F=∠CBF,
∴△ADE≌△CBF,
∴DE=BF,
∴CE=AF.
又∵CE∥AF,
∴四边形AFCE是平行四边形.
∴∠E=∠ADE,∠CBF=∠F.
在▱ABCD中,∠ADC=∠ABC,
∴∠ADE=∠CBF.
∴∠E=∠F.
在▱ABCD中,CD∥AB,
∴∠E+∠EAF=180°,
∴∠F+∠EAF=180°.
∴AE∥CF.
又∵CE∥AF,
∴四边形AFCE是平行四边形.
方法二(主要步骤):
∵四边形ABCD是平行四边形,
∴AD=BC,∠ADC=∠ABC,
∵AE=AD,CF=CB,
∴AE=AD=CF=CB,
∴∠E=∠ADE=∠F=∠CBF,
∴△ADE≌△CBF,
∴DE=BF,
∴CE=AF.
又∵CE∥AF,
∴四边形AFCE是平行四边形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询