已知F1,F2为双曲线的焦点,过F2作垂直于x轴的直线交双曲线于P,角PF1F2=30°,求双曲线的渐近线方程

yx3x
2010-08-27 · TA获得超过1593个赞
知道小有建树答主
回答量:572
采纳率:0%
帮助的人:599万
展开全部
F1 F2为双曲线x^2/a^2-y^2/b^2=1(a>o,b>o)的焦点,过F2作垂直于x轴的直线交双曲线于点p,且角P F1 F2等于30度,

将x=c代入x²/a²-y²/b²=1--->|y|=b²/a
∠PF1F2=30°--->b²/a=(2c)tan30°--->√3b²=2ac
--->3(b²)²=4a²(a²+b²)
--->3(b²/a²)²-4(b²/a²)-4=0
--->(b²/a²-2)(3b²/a²+2)=0
--->b²/a²=2
--->b/a=√2
--->双曲线的渐近线方程为:y=±√2x
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式