高一对数公式

星空_飘雪
2010-08-29 · TA获得超过227个赞
知道答主
回答量:215
采纳率:0%
帮助的人:262万
展开全部
用^表示乘方,用log(a)(b)表示以a为底,b的对数

*表示乘号,/表示除号

定义式:

若a^n=b(a>0且a≠1)

则n=log(a)(b)

基本性质:

1.a^(log(a)(b))=b

2.log(a)(MN)=log(a)(M)+log(a)(N);

3.log(a)(M/N)=log(a)(M)-log(a)(N);

4.log(a)(M^n)=nlog(a)(M)

推导

1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)

2.

MN=M*N

由基本性质1(换掉M和N)

a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]

由指数的性质

a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(MN)=log(a)(M)+log(a)(N)

3.与2类似处理

MN=M/N

由基本性质1(换掉M和N)

a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]

由指数的性质

a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(M/N)=log(a)(M)-log(a)(N)

4.与2类似处理

M^n=M^n

由基本性质1(换掉M)

a^[log(a)(M^n)]={a^[log(a)(M)]}^n

由指数的性质

a^[log(a)(M^n)]=a^{[log(a)(M)]*n}

又因为指数函数是单调函数,所以

log(a)(M^n)=nlog(a)(M)

其他性质:

性质一:换底公式

log(a)(N)=log(b)(N)/log(b)(a)

推导如下

N=a^[log(a)(N)]

a=b^[log(b)(a)]

综合两式可得

N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}

又因为N=b^[log(b)(N)]

所以

b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}

所以

log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}

所以log(a)(N)=log(b)(N)/log(b)(a)

性质二:(不知道什么名字)

log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下

由换底公式[lnx是log(e)(x),e称作自然对数的底]

log(a^n)(b^m)=ln(a^n)/ln(b^n)

由基本性质4可得

log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}

再由换底公式

log(a^n)(b^m)=m/n*[log(a)(b)]

--------------------------------------------(性质及推导完)

公式三:

log(a)(b)=1/log(b)(a)

证明如下:

由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1

=1/log(b)(a)

还可变形得:

log(a)(b)*log(b)(a)=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式