1.,已知向量a=(λ+2,λ²-cos²θ),b=(m,m/2+sinθ)(其中λ、m、θ∈R),且a=2b,求λ/m的取
展开全部
因为a=2b,故
λ+2=2m,即λ=2m-2.
λ^2-(cosa)^2=m+2sina, 代入λ=2m-2得到
4m^2-8m+4-(cosa)^2=m+2sina,整理得
4m^2-9m+4=(cosa)^2+2sina=1-(sina)^2+2sina,即
4m^2-9m+3= -(sina)^2+2sina, 两边同时减去1,得到
4m^2-9m+2= -(sina-1)^2, 因为0<=sina<=1
故上式右边属于区间(-1,0),据此解不等式
-1<=4m^2-9m+2<=0,可确定m的范围,而所求λ/m=(2m-2)/m=2-2/m,再求出m的范围后很容易得到
λ+2=2m,即λ=2m-2.
λ^2-(cosa)^2=m+2sina, 代入λ=2m-2得到
4m^2-8m+4-(cosa)^2=m+2sina,整理得
4m^2-9m+4=(cosa)^2+2sina=1-(sina)^2+2sina,即
4m^2-9m+3= -(sina)^2+2sina, 两边同时减去1,得到
4m^2-9m+2= -(sina-1)^2, 因为0<=sina<=1
故上式右边属于区间(-1,0),据此解不等式
-1<=4m^2-9m+2<=0,可确定m的范围,而所求λ/m=(2m-2)/m=2-2/m,再求出m的范围后很容易得到
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询